論文・報告

熊本地震が作用する橋梁の地震応答特性と 地盤特性を考慮した耐震設計法について

An earthquake response of the bridge acting of the Kumamoto earthquake wave and an earthquake-resistant design method on account of the ground properties.

石崎 剛*、高田 竜*、水田 洋司**、橋本 晃***、高田 和年*、城 秀夫**** Tsuyoshi Ishizaki、Ryo Takata、Yoji Mizuta、Akira Hashimoto、Kazutoshi Takata and Hideo Jo

*正会員 ㈱アルファ (〒806-0068 北九州市八幡西区別所町 2-38) **フェロー 九州産業大学 建築都市工学部 都市デザイン工学科 (〒813-8503 福岡市東区松香台 2 丁目 3-1) ***正会員 九州産業大学 非常勤講師 (〒819-0013 福岡市西区愛宕浜 1-22-14) ****フェロー ㈱アルファ (〒806-0068 北九州市八幡西区別所町 2-38)

2016年4月14日・16日に発生した熊本地震は、道路橋示方書の大規模地震に相当する地震が2度連続して発生しており、今までに類のない地震であった。本研究では、このような大規 模地震を2度続けて受けた橋梁の地震応答特性を明らかにするとともに、より耐震性の高い橋 梁とするために地盤特性を考慮した耐震設計法を提案する。対象橋梁には2径間の連続桁橋を 選定し、熊本地震における前震と本震の観測波形を連続して入力する非線形動的応答解析を実 施した。また、I種地盤とIII種地盤上に架橋された橋梁を設定し、上記地震の基盤波を用いて 作成した地表面波による非線形動的応答解析を実施した。その結果、橋脚柱の変位応答は一度 塑性域に達し再度地震を受けると最大点指向の応答特性により残留変位が累加すること、橋梁 の耐震性向上には地盤の振動特性を考慮した設計法が有効であることが分かった。

1. はじめに

2016年4月14日・16日に発生した熊本地震は、14日 (PM9:26)に前震(M6.5、最大震度7)を持ち、その28時間 後の16日(AM1:25)には本震(M7.3、最大震度7)を持つ地 震である。これは、道路橋示方書(以下「道示」)に規定 されているレベル2地震動相当が2回連続して作用した 場合と同じである。一般的な道路橋の耐震設計において、 このような地震力の作用状態は考慮されておらず、その 振動特性には不明な点が多い。またこの場合、道示に準 拠した耐震設計のみでは橋脚の耐震性能は不足すると予 想される。

本研究では、まず2章にこのような2度の大規模地震 が作用した場合の橋梁の地震応答特性について報告する。 解析では、モデル橋梁の非線形動的応答解析を実施し、 入力地震動には益城観測点の熊本地震強震記録より得ら れた前震と本震の地表面波を用いた。次に3章では、よ り耐震性の高い橋梁を目指して、架橋地点の地盤特性を 考慮した耐震設計法を提案する。道示に準じて設計した モデル橋梁を用い、3.2節で架橋地点の地盤特性を踏ま えた地表面地震波を用いた橋梁の耐震設計を実施し、 橋梁の耐震性能の確認とその向上方法の検討を行ってい る。なお、3.2節では地震基盤面波に益城観測点の熊本 地震記録波形を用い、I 種地盤とⅢ種地盤(福岡県北九 州市の軟弱地盤を想定)の地表面地震波を作成した。ま た、3.4節では橋梁と地盤との共振に着目する耐震設計 法を提案した。

2. 熊本地震が作用する橋梁の地震応答特性

2.1 解析条件

表-1に解析条件を示す。解析は2次元解析とし、解析 方向は橋軸方向に着目した。入力地震動には、KiK-net¹⁾ より熊本県益城町に設置された益城観測点(コード: KMMH16)での熊本地震前震と本震の強震記録を用いた。 また、解析は両地震動の単独作用時と連続作用時の2ケ ースについて実施し、得られた橋梁の地震応答特性を比

解析方向 橋軸方向 解析方法 時刻歴応答解析(直接積分法) 積分方法 Newmark-β法(β=0.25) 入力地震動 熊本地震 前震・本震 (益城観測点強震記録E-W成分) 解析時の減衰評価 Rayleigh減衰 鋼上部構造、支承(固定可動) 2%,0% 下部構造 線形(非線形)はり要素 支援 「小部構造」線形(非線形)はり要素 北域(1 種地盤) 10% (1 種地盤) 柱基部の非線形特性,除荷時剛性Kr ² M-φ (Takeda)モデル,Kr=0.5					
解析方法 時刻歴応答解析(直接積分法) 積分方法 Newmark-β法(β=0.25) 入力地震動 熊本地震 前震・本震 (益城観測点強震記録E-W成分) 解析時の減衰評価 Rayleigh減衰 鋼上部構造、支承(固定可動) 2%,0% 下部構造 線形(非線形)はり要素 支援 10% (I 種地盤) 桂基部の非線形特に,除荷時剛性Kr ² M-φ (Takeda)モデル,Kr=0.5	解析方向	橋軸方向			
積分方法 Newmark-β法(β=0.25) 入力地震動 熊本地震 前震・本震 (益城観測点強震記録E-W成分) 解析時の減衰評価 Rayleigh減衰 減衰 鋼上部構造、支承(固定可動) 2%,0% 下部構造 線形(非線形)はり要素 5% (2%) 基礎 10% (I 種地盤) 柱基部の非線形特性、)、除荷時剛性Kr ²¹ M-φ (Takeda)モデル,Kr=0.5	解析方法	時刻歷応答解析(直接積分法)			
入力地震動 熊本地震 前震・本震 (益城観測点強震記録E-W成分) 解析時の減衰評価 Rayleigh減衰 減衰 鋼上部構造、支承(固定可動) 2%,0% 下部構造 泉形(非線形)はり要素 5% (2%) 基礎 10% (I 種地盤) 柱基部の非線形特性、隙荷時剛性Kr ²¹ M- \phi (Takeda)モデル、Kr=0.5	積分方法	Newmark-β法 (β=0.25)			
(益城観測点強震記録E-W成分) 解析時の減衰評価 Rayleigh減衰 減衰 鋼上部構造、支承(固定可動) 2%,0% 下部構造 表形(非線形)はり要素 5% (2%) 基礎 10% (I 種地盤) 柱基部の非線形特性、隙荷時剛性Kr ²¹ M- φ (Takeda)モデル、Kr=0.5	入力地震動	熊本地震 前震・本震			
解析時の減衰評価 Rayleigh減衰 調食 鋼上部構造、支承(固定可動) 2%,0% 下部構造 線形(非線形)はり要素 5% (2%) 基礎 10% (I 種地盤) 柱基部の非線形特性、除荷時剛性Kr ²¹ M- \phi (Takeda)モデル,Kr=0.5		(益城観測点強震記録E-W成分)			
減衰 鋼上部構造,支承(固定可動) 2%,0% 下部構造 線形(非線形)はり要素 5% (2%) 基礎 10% (I 種地盤) 柱基部の非線形特性,除荷時剛性Kr ²¹ M-φ(Takeda)モデル,Kr=0.5	解析時の減衰評価	Rayleigh減衰			
減気 定数 上部構造 基礎 柱基部の非線形特性,除荷時剛性Kr ² 体用プログラム 体用プログラム 体用プログラム し、(2%) 10% (1種地盤) M-φ(Takeda)モデル,Kr=0.5 体用プログラム し、(2%) 10% (1種地盤) M-φ(Takeda)モデル,Kr=0.5 (2%) 10% (1種地盤) (1)% (1)% (1)% (1)% (1)% (1)% (1)% (1)%	鋼上部構造,支承(固定可動)	2% , 0%			
<u> </u> <u> 基礎 </u> <u> 10% (I 種地盤) </u> <u> 柱基部の非線形特性,除荷時剛性Kr²⁾ M⁻ φ (Takeda)モデル,Kr=0.5 </u> <u> t田プログラム </u> <u> UC=min (FPAME (2D)) </u> <u> </u> <u> </u>	減衰 ^{完数} 下部構造 線形(非線形)はり要素	5% (2%)			
柱基部の非線形特性,除荷時剛性Kr ²⁾ M-φ(Takeda)モデル,Kr=0.5	基礎	10% (I種地盤)			
使用プログラム UC-win/EDAME(2D)	柱基部の非線形特性 , 除荷時剛性Kr ²⁾	M-φ(Takeda)モデル , Kr=0.5			
で用フログラム UC=WIN/FRAME(SD)	使用プログラム	UC-win/FRAME(3D)			

表-1 解析条件

較した。なお、本解析では、3 成分の強震記録のうち特 に大きい加速度を観測した E-W 成分に着目した。

(1) 入力地震動

図-1 に前震と本震が連続作用した時の入力地震動を 示す。前震入力後に本震が入力されるように地震波形を 作成した。また、前震と本震の間に 60 秒間の加速度ゼロ の波形を追加入力し、前震終了から本震発生までの間を 表現した。

(2) 解析モデル

図-2、3、4に解析モデル、上部構造断面図および橋脚 柱基部断面図を示す。また、表-2に部位の全質量を示す。 モデル橋梁は、上部構造:鋼2径間連続非合成鈑桁橋、 下部構造:逆T式橋台、張出式橋脚、基礎:直接基礎で あり、支承条件は両橋台を可動、橋脚を固定とした。地 盤種別はI種地盤を想定した。これは、前震、本震の加 速度のパワースペクトルが周期 T=0.3sec~1.0sec の範 囲で卓越しており(図-8、9黒線参照)、概ね道示V²⁾に 規定されるタイプⅡ地震動のⅠ種地盤の入力地震動に該 当するためである。要素分割は、上部構造はスパン中央 とその中間に節点を置く4分割とし、下部構造は塑性化 を考慮しない部材は断面高程度、塑性化を考慮する部材 は塑性ヒンジ長を要素長として決定した。また、橋脚柱 の断面は、前震、本震がそれぞれ単独で作用した場合の 柱部材の応答曲率が、道示Vから耐震性能2として算出 される許容曲率内に収まるように配筋量を設定した。な お、桁と橋台の衝突は考慮していない。

2.2 地震応答特性

(1) 固有振動数と減衰曲線

固有値解析で得られた値と時刻歴応答解析に用いた Rayleigh減衰曲線を図-5に示す。Rayleigh減衰曲線は、 桁の振動モードである1次と橋脚の振動モードである4 次に着目した。

(2) 時刻歴応答解析

表-3 に単独作用時、表-4 に連続作用時の解析結果を示

す。また、図-6、7 に前震と本震の地震波の単独作用時 および連続作用時における橋脚柱基部の曲げモーメント -曲率関係の応答履歴曲線を示す。図-6、7 に示す赤線は 前震、青線は本震(連続作用では 345sec~630sec を抽出) の応答履歴曲線であり、黒破線は橋脚柱の骨格曲線、骨 格曲線中の黒実線は許容曲率を示している。ここに、図 中の○、●は解析の開始点、終了点である。

1) 単独作用

図-6に示す通り、橋脚柱基部の応答曲率は、前震、本

震ともに塑性域に達しているが、最大応答曲率は許容曲 率以内である。また、残留変位は両地震動ともに図の曲 率軸負側にある。

表−3 単λ	出作月	刊時の	脾竹筋	古米
--------	-----	-----	-----	----

入り	カ 波	形	の	種	類	熊本地震前	ī震E-₩成分	熊本地震本	≍震E-₩成分
1	次の	固	有 周	期			T = 0.	517 sec	
橋脚の慣	性力作	用位	置の			変位	水平力	変位	水平力
最大応答	「変位・	水平	之力	(mm)	(kN)	151.0	7281	146.8	7206
橋脚札	主基	部の	照	査 結	;果				
	最大川	芯答日	曲率	φd	(1/m)	0.02	375	0.02	263
曲げに	降位	犬曲 4	軺	φyc	, ,,		0.00	346	
対する	許	容曲	軺	φa	11		0.02	388	
照査							1 塑性域)		
	나니 여자	:φα	l∕¢a	(判	定)	0.99 (≦1 OK)	0.95 ($\leq 1 \text{ OK}$)
	まれ、海結佐田時の細毛は田								

	衣-4 連続作用时の胜机福米									
入;	力 波	形の	種類	熊本地震前震E-W成	3分 + 本震E-W成分					
1	次の	固有周	期	T = 0.5	517 sec					
橋脚の慣	性力作	用位置の		変位	水平力					
最大応答	等変位·	水平力	(mm) (kN)	204.4	728					
橋脚	柱 基言	部の照	査 結 果							
	最大川	芯答曲率	φd (1/m)	0.03	624					
曲げに	降位	犬曲率	фуо ″	0.00346 0.02388						
対する	許	容曲率	фа <i>"</i>							
照査	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	:φd/φy	o(応答域)	10.49 (≧	1 塑性域)					
	11.42		() (at cha)	1 50 ()						

2) 連続作用

図-7 に示す通り、前震の応答は単独作用時と同じであ る。一方、本震では前震での残留変位(図中の〇)から 応答が始まり、本震での最大応答曲率を単独作用時と比 較すると、単独作用時では φ=-0.02263m⁻¹ であったのに 対し、連続作用時では φ=-0.03624m⁻¹と約 1.6 倍に増加 している。また、残留変位(図中の●)についても、単 独作用時では φ=-0.00221m⁻¹ に対し、連続作用時では φ =-0.00506m⁻¹と約2.3 倍に増加している。これは、残留 変位が生じている上に、橋脚柱基部の非線形特性が経験 した最大応答曲率に向かう最大点指向型であるので応答 曲率が累加されるためである。

(3) 加速度スペクトル

図-8~11の主軸に上部構造質点の応答加速度のパワ

ースペクトルを、第2軸に入力加速度のパワースペクト ルを示す。図8、9は単独作用時、図-10は連続作用時の 前震に対応する (0sec~285sec を抽出した) パワースペ クトル、図-11 は連続作用時の本震に対応する(345sec ~630secを抽出した)パワースペクトルである。

図-11 連続作用時の本震に対応するパワースペクトル

1) 単独作用

前震の応答加速度のパワースペクトルは、周期 7=0.5、 0.6、0.7sec付近で卓越している(図-8)。これは、橋梁 の1次固有周期が T=0.517sec であり、この周期に近い地 震波と共振したためと考えられる。次に、本震の応答加 速度のパワースペクトルは T=0.8sec 付近が卓越してい る(図-9)。これは、本震作用中に塑性ヒンジが形成され 卓越する地震波の周期(T=0.8sec付近)で応答したため と考えられ、前震単独作用時のような強い共振現象は生 じていない。

2) 連続作用

連続作用時の前震に対応するパワースペクトル(図 -10)は、単独作用時と同じである。一方で、連続作用時 の本震に対応するパワースペクトル(図-11)は、単独作 用時と同様に 7=0.8sec 付近が卓越しているが、単独作用 時と比較すると 7=0.5sec 付近の応答は減少し、7=0.8sec 付近、1.0sec 付近の応答が増加している。これは、前震 での塑性ヒンジ形成後に本震を受けることから、卓越す る地震波の周期(7=0.8sec 付近、1.0sec 付近)で応答し ているためと考えられる。

2.3 まとめ

- (1) 橋脚柱の塑性化の要因には、大きな地震動によるものと小さくても橋梁と共振しやすい地震動によるものとがある。
- (2)前震で柱が塑性域に達した場合、本震での応答は残 留変位点から前震で経験した最大応答曲率に向かう 最大点指向型であり、その応答曲率は累加される。
- (3) 塑性化後の橋脚柱は入力地震動に類似した応答をする。(図-6.7の応答履歴曲線の曲率軸に平行な部分)

3. 地盤特性を考慮した橋梁の耐震設計法

3.1 対象橋梁

道路橋示方書に基づき I 種地盤とⅢ種地盤上での橋梁 を設定した。架橋地点は福岡県北九州市を想定し地域区 分を C 地域、入力地震動には地域別補正係数 C₂=0.7、C₁ z=0.8、C_{II z}=0.7を考慮した。表-5に橋梁諸元を示す。基 礎形式は I 種地盤では直接基礎、Ⅲ種地盤では杭基礎と した。また、支承条件は地震時水平力分散型ゴム支承と した。図-12 にⅢ種地盤上の橋梁を示す。I 種地盤上の橋 梁は図-2 の橋梁の支承条件を地震時水平力分散型ゴム 支承としたものである。なお、解析は 2 次元解析とし、 解析方向は橋軸方向に着目した。

対象橋梁の固有振動数と減衰曲線を図-13 に示す。橋 梁の1次固有周期は、I種地盤上の橋梁が *T*=0.886sec、

	衣 0 個米咱儿								
重要度区分	,地域区分	B種の橋 , C地域							
地盤種別		I種地盤およびⅢ種地盤							
上部構造		鋼2径間連続非合成鈑桁橋							
下部構造	橋台,橋脚	逆T式橋台 , 張出式橋脚							
基礎	I種地盤上	直接基礎							
	Ⅲ種地盤上	場所打ち杭 (φ1200)							
支承条件	分散型ゴム支承	橋台 : K=7040kN/m							
		橋脚 : K=27588kN/m							
上部工	A1橋台, P1橋脚, A2橋台	1197kN, 3907kN, 1197kN							
	合計(桁全重量)	6301kN							

図-12 Ⅲ種地盤上の橋梁

Ⅲ種地盤上の橋梁が 7=0.874sec である。また、時刻歴応 答解析の解析条件および解析結果を表-6、7 に示す。設 計計算の結果、柱の配筋は橋軸方向主鉄筋を D29 の 125 ピッチ(橋軸直角方向は 250 ピッチ)とし、横拘束鉄筋 を D16 の 150 ピッチ(有効長 1000mm)とした。なお、柱 の鉄筋量は I 種地盤、Ⅲ種地盤で同様となった。

図-13 固有値解析結果

表-6 時刻歴応答解析条件

解析方向			橋軸方向			
解析方法			時刻歷応答解析(直接積分法)			
積分方法			Newmark-β法 (β=0.25)			
入力地震動		I種地盤	タイプ II − I −1~3波			
		Ⅲ種地盤	タイプⅡ-Ⅲ-1~3波			
解析時の減	衰評価		Rayleigh減衰			
洋井	鋼上部構造	圭 , 支承	2% , 3%(弾性支承)			
(成表 字粉)	下部構造	はり要素	5%(線形),2%(非線形)			
化叙	基礎		10%(I種地盤),20%(Ⅲ種地盤)			
柱基部の非	線形特性		M-φ(Takeda)モデル			
除荷時剛性	Kr ¹⁾		Kr=0.5			
使用プログ	ラム		UC-win/FRAME(3D)			

表-7 非線形動的応答解析結果(道示設計)

オ	z-1	非称け	ド町	り心	合脾饥痛	5 未(迌	「不設計」)
入	力 波	形の	種類	i	I 種地盤(I	I−I−1~3)	Ⅲ種地盤(I	I-Ⅲ-1~3)
	1次の)固有周	期		T = 0.8	86 sec	T = 0.8	374 sec
分散型=	ゴム支承	の最大			変位	水平力	変位	水平力
応答変位	・水平	力(3波平	均) (mm	n) (kN)	147.4	4065	131.3	3621
橋脚	柱 基	部の照	査 結 🗄	果				
		橋軸主	鉄筋		D29ctc125-1.0段		D29ctc125-1.0段	
AN- 100- 100		直角主	鉄筋		D29ctc25	i0-1.0段	D29ctc25	50-1.0段
<u></u>	橋軸	せん断補強	1(横拘)	束筋)	D16-6本	ctc150	D16-6本	ctc150
鉄筋量	直角	せん断補強	1(横拘)	束筋)	D16-3本	ctc150	D16-3本	ctc150
	最大	応答曲率	φd	(1/m)	0.010	673	0.012	2275
曲げに	降	降伏曲率 øyo "				0.002993 0.0029		
対する	許	容曲率	φa	"	0.017	208	0.017	7208
照査	나 하	: φ d/ φ yo	(応答)	域)	3.57 (≧1	塑性域)	4.1 (≧1	塑性域)
	叱举	· dd/da	(判定))	0.62 (<1 OK)	0.71 (<1 OK)

3.2 架橋地点での地震波の作成

(1) 解析方法と地盤条件

図-14 に I 種地盤およびⅢ種地盤の解析イメージ図を 示す。架橋地点での地震波の作成には、北九州では M クラス地震の観測記録がないため熊本地震強震記録の益 城観測点の地震基盤面波(KiK-net より)を用いた。な お、本解析についても3成分の強震記録のうち特に大き い加速度を観測した E-W 成分に着目した。

I 種地盤入力地震動波形作成の解析イメージフローお よび地盤条件を図-15、表-8 に、Ⅲ種地盤入力地震動波 形作成の解析イメージフローおよび地盤条件を図-16、表 -9 に示す。I 種地盤の入力地震動波形は、益城観測点の 土質柱状図(KiK-net より)を用いた地震基盤面から工 学的基盤面への引き上げ解析(重複反射理論)³⁾を行い 作成した。Ⅲ種地盤の入力地震動波形は、架橋想定地点

表-8	I種地盤入力地震動波形作成の地盤条件

岩種区分	$\rho (t/m^3)$	層厚 (m)	深度 (m)	せん断弾性波速度 Vs(m/s)	減衰定数 (%)	歪依存曲線
火山灰質粘土	1.7	4.0	4.0	110	4.50	古山田ほか粘性土)
工学(Ŋ <u>'''</u>	5.0	9.0	240	2 00	古山田ほか粘性土
砂 基盤	1.8	6.0	15.0	240	2.00	古山田ほか砂質土
軽石凝灰岩	2.0	18.0	33.0	500	1.00	古山田ほか粘性土
火山灰質粘土	1.8	8.0	41.0	400	1.25	古山田ほか粘性土
砂	2.1	10.0	51.0	760	0.65	古山田ほか砂質土
砂礫	2.2	18.0	69.0	760	0.65	古山田ほか砂質土
凝灰角礫岩	2.6	22.0	91.0			線形
安山岩	2.6	6.0	97.0	820	0.60	線形
凝灰角礫岩	2.6	4.0	101.0	地盤	の地震応答	解析① 線形
安山岩	2.6	32.0	133.0	1470	0.30	線形
凝灰角礫岩	2.6	10.0	143.0	700	0.70	線形
熔結凝灰岩	2.6	96.0	160.0	1220	0.20	線形
安山岩	2.6	26.0	169.0	1380	0.30	線形
凝灰岩	2.6					線形
安山岩	2.6	32.4	201.4	840	0.50	線形
凝灰岩	2.6					線形
安山岩	2.6	32.6	234.0	1470	0.30	線形
地震基盤	12.7	21.0	255.0	2700	0.20	線形

表-9 Ⅲ種地盤入力地震動波形作成の地盤条件

地層名	記号	γt (kN/m ³)	層厚 (m)	深度 ▽0.00	せん断弾 性波 速度 Vs(m/s)	非線形 モデル	γ 0.5 (%)	hmax (%)	備考
埋土·盛	Bg	20	1.00						解析対象外
土	Bs	19	0.35					一地表	面 解析対象外
粘質土	$\operatorname{Ac1}$	17	1.65	1.65	159	修正R-0	0.18	16.70	古山田ほか粘性土5)
粘質土	Ac2	14	3.90	5.55	100	修正R-0	0.18	16.70	古山田ほか粘性土
砂質土	As	18	2.65	8.20	137	修正R-0	0.10	20.79	古山田ほか砂質土
粘質土	Ac3	16	4.45	12.65	50	修正R-0	0.18	16.70	古山田ほか粘性土
粘質土	Ac4	14	1.60	14.25	126	修正R-0	0.18	16.70	古山田ほか粘性土
粘質土	Ac5	17	1.55	15.80	191	修正R-0	0.18	16.70	古山田ほか粘性土
礫質土	Ag	20	3.85	19.65	243	修正R-0	0.10	20.79	古山田ほか砂質土
砂岩	Tss	21	1.10	20.75	300	線形	地	盤の地	夏応答解析②
砂質頁岩	Tsh	20	0.90	21.65	300	線形			工学的基盤面

での土質柱状図を用いて工学的基盤面から地表面への引き上げ解析(非線形解析)³⁾を実施した。

I 種地盤入力地震動波形作成の土質定数は、土質・岩 種区分、層厚、せん断弾性波速度が既知であり、密度は 土質・岩種区分からの一般値、減衰定数は(式(1))に示 すように減衰を表すQ値からの推定としQ値はせん断弾 性波速度の1/10とした⁴⁾。また、歪依存曲線は、古山田 ほか⁵⁾による砂質土・粘性土の全国的な平均値として与 えた関係式によるものとした。次に、Ⅲ種地盤入力地震 動波形作成の土質定数は、土質・岩種区分、層厚、密度 が既知でありせん断弾性波速度は道示V(式(2)、(3)) より求めた。砂質土・粘性土のⅢ種地盤としての非線形 モデルは、修正 R-0⁶⁾モデルとし、50%ひずみ $\gamma_{a.5}$ 、最大 減衰定数 hmax は古山田ほかによるものとした。

$$h = 1 / (2Q) \tag{1}$$

粘性土層の場合 $Vs = 100Ni^{1/3}$ (1 $\leq Ni \leq 25$) (2)

砂質土層の場合 $V_S = 80Ni^{1/3}$ (1 $\leq Ni \leq 50$) (3)

ここに、*h* は減衰定数、*Q* 値は減衰を表す量、*Vs* はせん断弾性波速度(m/sec)、*Ni* は標準貫入試験から得られる *i* 番目の地層の *N* 値である。

(2) 解析結果

図-17、18 に入力した地震基盤面波を、図-19~22 に解 析で得られた地震波を示す。図-19、20 は前震、図-21、 22 は本震の地震基盤面波を用いた結果である。 I 種地盤の引き上げ波形(図-19、21)の加速度は、基盤波 (図-17、18)のそれより大きくなっている。これは、地盤 のせん断弾性波速度が小さくなるにつれ、地震波は伝達 速度が遅くなる一方で、振幅が増幅される特徴を持つた めである。しかしながら、Ⅲ種地盤の引き上げ波形(図-20、 22)の加速度は、I 種地盤の引き上げ波形(図-19、21)の それより小さくなっている。これは、減衰が大きな地盤 を通過する際の地盤の非線形挙動により、地震波の振幅 が減衰したためと考えられる。なお、I 種地盤では地表 面までの引き上げ解析を実施し、益城観測点の地表面観 測波との加速度のパワースペクトルを比較した(図-23、 24)。その結果、解析で得られた地震波と観測波は、前震 では *T*=0.2~0.4 秒を除き卓越周期、パワースペクトルと もに概ね一致していることが確認できたが、本震では卓

図-24 本震の地表面観測波と引き上げ波のパワースペクトル

越周期は概ね一致しているものの、パワースペクトルに 乖離が見られた。この理由の一つとして、今回の引き上 げ解析では前震、本震ともに同じ土質定数(表-8)を用 いたが、本震の地表面観測波には前震の通過に伴う地盤 の塑性化等による土質定数の変化を含んでおり、これが パワースペクトルに影響を及ぼしたのではないかと考え られる。

3.3 架橋地点での地震波による耐震設計

3.2節で作成した図-21、22に示す地震波を用いて3.1 節の道示に準拠し設計した対象橋梁について解析した。 表-10に非線形動的応答解析結果を示す。最大応答曲率 ødは、道示設計結果(表-7)と比較しI種地盤および Ⅲ種地盤それぞれで6倍、2倍と大きく、許容値を超え 耐震性を満足しない結果である。図-25、26に、I種地盤

表-10 引き上げ波による非線形動的応答解析結果

およびⅢ種地盤上の橋梁上部構造における応答加速度の パワースペクトルを示す。図の青線が応答加速度のパワ ースペクトル(主軸)、黒破線は入力加速度のパワースペ クトル(第2軸)である。図-25、26より道示に準じ設 計した橋梁の1次固有周期が、入力地震動波形の卓越周 期と一致していることが分かる。このことから、橋梁が 入力地震動波形と共振して応答曲率を大きくしたと考え られる。

3.4 耐震性能向上設計

(1) 耐震性能向上対策

I 種地盤上の橋梁では、地震波の卓越周期が短周期側 となるため、耐震対策は橋梁の長周期化とした。具体的 には、鋼上部構造(質量: *M*=642.5kg)を PC 上部構造(質 量: *M*=1045.9kg)に変更し(質量増加による固有周期の 延長)、分散型ゴム支承を元の剛性から 35%低減させた (より柔軟な支持による固有周期の延長)。ここに、支承 剛性の低減率は反復計算により数値を決定した。

Ⅲ種地盤上の橋梁では、地震波の卓越周期が長周期側 となるため、耐震対策は橋梁の短周期化とした。具体的 には、橋脚上を固定支承に変更した。

(2) 解析結果

1) 固有振動数と減衰曲線

図-27 に対策後の橋梁での固有値解析で得られた値と 時刻歴応答解析に用いた Rayleigh 減衰曲線を示す。橋梁 の1次固有周期は、I種地盤上の橋梁で *T*=1.398sec(対 策前:*T*=0.886sec)、Ⅲ種地盤上の橋梁で *T*=0.602sec(対 策前:*T*=0.874sec)であり、各地盤上の橋梁で目指した 通りの長周期化、短周期化が実現できている。

図-27 対策後の固有値解析結果

2) 時刻歴応答解析

表-11 に対策後の非線形動的応答解析結果、図-28、29 に対策後の橋梁上部構造の応答加速度のパワースペクト ルを示す。表-11 より最大応答曲率は、表-10(対策前) のそれと比較し両地盤ともに約1/5に低減され、許容値 を満足している。また、図-28、29より対策後の橋梁の1 次固有周期が地震波の卓越周期から十分に離れているこ とが分かる。つまり、対策後では橋梁と地盤との共振を 避けることができ、その結果、橋脚柱の応答を小さくす ることができたと考えられる。

表-11 引き上げ波による対策後の

11 64	et 11 . 1 . 1	
北線形画	助的広2	<u>容解</u> 析結果

		21	114-11	/ /////		VI/IB/IT		
入:	力 波	形の	種	類	I 種地盤引	き上げ波形	Ⅲ種地盤引	き上げ波形
1	次の	固有周	期		T = 1.3	398 sec	T = 0.0	602 sec
分散型	!ゴム支	を承の			変位	水平力	変位	水平力
最大応答	変位・	水平力	(mm)	(kN)	258.9	4531	56.9	2794
橋 脚 柱 基 部 の 照 査 結 果								
	最大师	芯答曲率	φd	(1/m)	0.01	438	0.00	403
曲げに	降値	犬曲率	ф уо	11	0.00299		0.00299	
対する 許容曲率 φa "					0.01	721	0.01721	
照査	レッ	:φd/φyα) (応	答域)	4.81 (≧1	」 塑性域)	1.35 (≧	1 塑性域)
	나니 약의	:φd/φa	(判)	定)	0.84 (≦1 OK)	0.23 (≦1 OK)

一方で、図-13、27 を比較すると、Ⅲ種地盤では対策 後(図-27)の1次モードの減衰が大きくなっていること が分かる。これは、橋脚上の支承条件を固定としたこと で、橋梁全体の減衰に基礎の減衰率が大きく寄与したた めであり、橋梁全体の減衰が向上したと言える。そこで、 対策後の応答低減にこの減衰向上効果がどの程度影響し たかを確認するため、対策後の橋梁モデルに対策前の Rayleigh 減衰を与え解析した (case: 共振回避のみ)。 その結果、最大応答曲率 ødは 0.00609m⁻¹と Rayleigh 減 衰の変更前(case: 共振回避+減衰向上[表-11 参照])よ り1.5倍程度大きくなった。したがって、減衰向上によ る応答低減への影響が確認される。ただし、これらの応 答低減を率として表すと、最大応答曲率 ød は対策前で 0.02290m⁻¹、対策後(case: 共振回避+減衰向上)では 0.00403m⁻¹ (0.001887m⁻¹低減)、対策後 (case: 共振回避 のみ)では 0.00609m⁻¹ (0.01681m⁻¹ 低減) であることか ら共振回避のみで約90%を占めることとなる。以上から、 共振を避けることでの耐震性能の向上効果の大きさが確 認できる。

(3) 道路橋示方書に対する検証

表-12 に対策後の橋梁に対する道示規定の入力地震動 での解析結果を示す。最大応答曲率は、対策前(表-7) と比較しⅠ種地盤上の橋梁で約50%、Ⅲ種地盤上の橋梁 で約20%減少している。したがって、道示規定の入力地 震動に対しても対策後の橋梁の耐震性向上が確認できる。

表-12 道示波形による対策後の非線形動的応答解析結果

入:	力波形の種類	I 種地盤(Ⅱ-I-1~3)	Ⅲ種地盤(Ⅱ-Ⅲ-1~3)	
1次の固有周期		T = 1.398 sec	T = 0.602 sec	
分散型コ	「ム支承の最大	変位 水平力	変位 水平力	
応答変位	・水平力(3波平均)(mm)(kN)	241.6 3221	75.1 3021	
橋 脚 柱 基 部 の 照 査 結 果				
曲げに 対する 照査	最大応答曲率 φd (1/m)	0.00538	0.01001	
	降伏曲率 φyo "	0.00299	0.00299	
	許容曲率 φa "	0.01721	0.01721	
	比率 : φ d/φ yo (応答域) : φ d/φ a (判定)	1.8 (≧1 塑性域)	3.35 (≧1 塑性域)	
		$0.31~(\leq 1~0K)$	0.58 (≤ 1 OK)	

(4) 引き上げ波形連続作用時の検証

対策後について、図-19~22 に示した前震、本震の引 き上げ波を、前震(0 sec~345sec)、本震(345 sec~ 630sec)として I 種地盤上の橋梁、Ⅲ種地盤上の橋梁そ れぞれに連続作用させた場合の解析結果を表-13 に示す。 また、解析で得られた橋脚柱基部の曲げモーメント-曲率 関係の応答履歴曲線を図-30、31 に示す。なお、285 sec ~345sec には、加速度ゼロの波形を入力している。

表-13 引き上げ波形連続作用による 対策後の非線形動的応答解析結果

入力波形の種類	I 種地盤引き上げ波形 前震+本震		Ⅲ種地盤引き上げ波形 前震+本震				
1 次 の 固 有 周 期	T = 1.398 sec		T = 0.602 sec				
分散型ゴム支承の	変位	水平力	変位	水平力			
最大応答変位・水平力 (mm) (kN)	258.9	4531	57.8	2857			
橋脚柱基部の照査結果							
最大応答曲率 φd (1/m)	0.01438		0.00430				
曲げに 降伏曲率 φyo "	0.00299		0.00299				
対する 許容曲率 φa "	0.01721		0.01721				
	4.81 (≧1	塑性或)	1.44 (≧	1 塑性哦)			
: ¢ d/ ¢ a (判正)	0.84 (🗎	≥1 0K)	0.25 ($\geq 1 \text{ OK}$			
最大応答曲率: φ d −0.00282 m ⁻¹ 30000 ↓ 15000 ↓ 15000 ↓ 15000 ↓ 15000 ↓ 15000 ↓ 15000 ↓ 15000 ↓ 15000 ↓ 15000	最大 30000 15000 イン バー 世 日 15000 イン (イン 世 日 5000 一 一 20000 ー 20000	x応答曲率 : φ =-0.00	(3 \$	51. 10sec) 01438 m ⁻¹ =0			
(a) 0.02 0 0.02 0 曲率 (m^{-1}) 0.02 0 (b) 0.02 0 (c) 0.02 0 日本部 (m^{-1})	.04 (-0.04 -0.02 b) 345se	² _{曲率⁰(m⁻¹)} c - 630sec	0.02 0.04 の履歴			
図−30 I種地盤連約	売作用時の	の応答権	夏歴曲線				
(4.47sec)			(35	51.86sec)			
最大応答曲率: φ d -0.00331 m ⁻¹	最大	、応答曲率:	φ d -0.0	00430 m^{-1}			
30000	30 000						
$ \begin{array}{c} \widehat{\textcircled{a}} \\ 15000 \\ \stackrel{\mathcal{L}}{\underset{\mathfrak{a}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}}}}}}}}}$	(15000 → 0 × 0 ド サ → → → → → → → → → → → → →	φ =-0. 00	0028	- <u>0. 000</u> 07 0. 02 0. 04			
(a) Osec - 345sec の履歴	() 生化日吐	b) 345se の <u>たな</u> を	c – 630sec தாசபே ம்	の履歴			
図=31 Ⅲ理氾寍連続作用時の応答腹歴囲線							

I 種地盤上の橋梁での連続作用時の橋脚柱は、前震で 弾性応答である(図-30)。本震では塑性域に達するもの の許容値を満足している。次に、Ⅲ種地盤上の橋梁での 連続作用時の橋脚柱は、前震で若干塑性域に達している (図-31)。この状態で本震が作用するが最大応答曲率は 許容値を満足している。表-13 の最大応答曲率を表-11 (単独作用時)のそれと比較すると、若干増加しており、 前震で橋脚柱が塑性域に達し、残留変位が生じた上で本 震を受けることによる残留変位の累加が確認できる。

3.5 まとめ

- (1) 地震基盤面波より土質柱状図を用いて比較的精度良 く地表面地震波を作成することができる。
- (2) 地盤解析により架橋地点地盤特有の地震波を作成し、 その特性(卓越周期)を知ることで、構造物との共 振を避け、耐震性能を向上させることが可能である。

4. おわりに

本研究では、2章において2度の大規模地震が作用した場合の橋脚柱の地震応答特性を明らかにし、このよう な場合、道示に準拠した地震動の単独作用の設計では橋 脚柱の耐震性が不足することを示唆した。また、3章で は橋梁と架橋地点の地盤との共振による応答の増大を示 唆し、共振を回避した場合の耐震性能向上効果を示した。 以下に、本研究から得られた知見を示す。

- (1)橋脚柱の耐震性能不足の原因には、元々の橋脚柱断面の耐力不足の他に、大きな加速度を持つ地震動によるものや地震の加速度は小さくても橋梁と共振しやすい地震動によるものがある。
- (2)橋梁が大規模な地震を連続して受けた場合、前震で 橋脚柱断面が塑性化すると次の地震で残留変位が累 加され、大きな被害を生じることがある。
- (3) このような地震による被害を最小限に留める方策としては、橋脚柱断面の耐力強化や地震エネルギーを吸収できる装置の付加などが考えられるが、これらと合わせて橋梁と地盤が共振しない構造とすることが重要であり、地盤特性を踏まえた耐震設計法が有効である。

参考文献

1)防災科学研究所:強震観測網(K-NET、KiK-net) 2)日本道路協会:道路橋示方書・同解説V耐震設計編、平 成24年3月

3)k-SHAKE+for Windows (株式会社 構造計画研究所)

4)日本建築学会:地震動と地盤、1983

5)日本建築学会:建物と地盤の動的相互作用を考慮した 応答解析と耐震設計、2006

6) 土木学会:新体系土木工学18 土の力学(Ⅲ)、1981 年7) 土木学会:実務に役立つ耐震設計入門、2011.1

8) 大崎順彦:新・地震動のスペクトル解析入門、鹿島出版、1994

(2017.6.30 受付)